N87-27240

BUBBLE VECTOR IN AUTOMATIC HERGING

P. R. PAMIPI and T. G. EUTLER
RPK Corgoration 2UTLER ANALTZES

SUMMARY

Thiz paper shows that it is wWithin the cavability of the
DMAF language to build a set of vectors that can grow incremen-
tally to be applied automatically and economically within a DMAP
loop that serve to append sub-matrices that are generated within
a loop to a core matrix. The method 3f constructing such vectors
is explained. In an appendix are tfour DMAP packets for applying

these techniques in different ways.

PURPOSE

The objective is to build a sz=t of partiticning vectors
that will grow incrementally tc ke aspplied automatically in a
DMAP loop without analysc intervention for the purpose of append-
ing the sub-matrices, fcrmed in the loor

accumulated from preceding passes through Ltis

T

l 01 J

'|_001J

L 9001 i

Loo....001'T

118

DILEMMA

The DMAP language in NASTRAN does nct have a module that
will generate vectors of arbitrary size. Nc matriz mathematical

operations will increase the order of a matriz as demonstrated
here.

When two matrices are added or subtracted. the crder of
the result stays the same:

[a b + [mn fla t m) (b t n)]
<_)‘_p - [N oo
e dlsyn gy Lo 2 pid Do g

If two matrices are multiplied, the crder of the rasult
will not exzceed the bounding order of the multiplicands:

£

C ledl

[a b (m n) [{am + bp){an + bq)]

Cd_"‘\

% {em + dpl(en + dg)

x“)

If a matrix is squared, the order of the result stays the
same:

D -
-

[a b] [(a‘ + bc)(ab + bd)]
) |

cd 2%2 (ca + dcl(cb + 47

Merging does produce a matrix of expanded order if one has
at hand a partitioning vector, of the order desirad, to monitoc

the meraging.. This is tantamount to saying that vou can =zxpand

the order of a matrix if you already have one arcund which iz of
the size that you want. A scheme is therefore ne=2ded which em-
ploys a sequence of DMAP utility modules to provide an incre-
mentally expanding partitioning vector. However, no single mod-
ule available in NASTRAN will continually increase the order of

a partitioning véctor as desired here. If you 1let this notion

119

soak in for a time, then the inspiration percolates to the front

of your brain to say "start with something big and extract the

object of required order from it." Our ijeas at this point are
still a long way away from the final algorithm, but this is ths
seminal idea. After a number of crude tries, the algorithm shown
here finally took shape.

lNNOTATION
3
|22
A vector is a column matriz : (V3 = |*3
-
'0
14
a

The transpose of a vector is a row matrix:

T -]
tvi® = L A A5 A5 Ag.eeeieenes J

To save space in the text, vectors will be written as transpcses
of row matrices:

-

= L al A a3 34 e ee A

INITIAL CONSIDERATIONS

The design of the DMAP ALTER packet will hinge on the
range of certain parameters.

1. The size of the core matrix to which sub-matrices are to be

appended. (Number of starting columns or rows)

2. The position at which sub-matrices are to be appended; i.e.
Pre or Fost.

3. The size of the final matrix after all sub-matrices have been
appended (Final number of columns or rows).

120

ORIGSEL Pood. o
OF POOR QUALTTY

4. The number of columns or rows in the sub-matrix generated in
each pass through the DMAP loop (Increment).

SCHEME FOR APPENDING A SUB-MATRIX IN EACH PASS THROUGH A LOCP

The nub of the idea is to operate with a series of vectors
of order larger than that of the matrix to be built in the TMAP
loop. The final MONITOR vector., that will be used for the actual
merge operatiocn, will be extracted from the SOURCE. The tech-
nigque which 1is used in the intermediate cperations for manéqinq
the incremental growth of the MONITOR vector is where the real
interest lies. This will be elaborated in detail, but as an
introduction suffice it to say that there are two SOURCE vectors
which are companions such that one has the increment at the tip
of the vector and the other has the increment at the base of the
vector. A BUBBLE vector is created whose lenagth remains invari-
ant, but whose increment moves inward from its starting position
in a sea of zerces. The BUBBLE vector leaves a trail of its pre-
vious positions as an accumulation of the increments into a vec-
tor called CLUSTER. The overall length cf the CLUSTER vector
remains invariant as the c¢ollection of increments increases.
CLUSTER 1is wused to partition the MONITOR from cne of the SOURCE
vectors.

{SOURCE} ====2%=3==) {MONITOR}

The steps in managing these vectors follow. For example,
in the case of post-appending a single column in @ach pass, the
SOURCE vector would have leading zeroces and a one 1in the last
position, so a logical name would be BAS.

LOOOO...........0000000............00000000000.......0001 JT

Use this B30URCE vector as as a replenishable reservoir
from which to take slices of increasing length to form the MONI-
TOR vector as the product matrix grows from chcessive appending
loops. .

“121

Several examples of these slices follow:

‘ 0l J
Slice taken to create a MONITOR vector to merge a single vector
to the right hand side of a core consisting of a single vector,
resulting in a product matrix of 2 columns.

| 00000001 |T

Slice taken to create a MONITOR <wvector to merge a single vector
to the right hand side of a 7-col core matrix, resulting in a
product matriz of & columns.

| 000000000000001 JT

Slice taken to create a MONITOR vector to merge a single vector
to the right hand side of a l4-col core matriz, resulting in a
product matrix of 15 columns.

The CLUSTER vectors needed to do the slicing from the
SOURCE would be of the same order as the SOURCE., but would have a
cluster of increments equal to the number of columns in the pro-
duct matrix after the end of a pass; i.e. the three CLUSTER vec-
tors that would be used to slice the three MONITOR vectors shown
above from the SOURCE wcould be respectively:

\ 000000...... «++,0000000......... 000000000C0. 0011 |T

' T
L 000000......... 0000000, 00000000000...... 11111111 J‘
L 000000...... 0000000..... 00000000000.....111111111111111 JT

It is evident from the above three examples that the num-
ber of ones in the CLUSTER vector grows by an increment after
each pass (in this example the increment is one). The needs of

122

CRIGINAL PAGE I3
OF POOR QUALITY

the algorithm will be met by saving only the latest CLUSTER vec-
tor and devising some way of adding another increment in the next
interior position. For example, in building the CLUSTER for the
pass after the product has grown to order eight, one could add a
vector to the "B" CLUSTER vector, which is of the same order as
the "8" CLUSTER vector, but has zeroes everywhere except for a
one in the 9th-from-the-end interior position.

L 000000....000cunn 0000€00.......90000000...... 00011111111 gT
J4
}
¥
+ ¥
¥
L 000000.........0000000.......00000000000..... ©0100000000 JT
V
]
= ‘
v
L 000000......... 0000000....... 00000000000, 111111111 |T

Well, here is a situation that can be used to evolve pass
by pass. It is a matter of moving the "1" in the intermediate
matrix to the next-interior-position . All well and gocd. But
how does one do that? In a vulgar analogy, just bite off a zero
from the front and spit it onto the end. The tcols are already
at hand to do just that. The two companion SQURCE vectors are of
the right order. There is a "1" on the front of cne of the two
companions to do the biting off of a zero from the front. The
other of the pair has a "l1" on the end to do the spitting ocf a
zero onto the end. This intermediate vector is saved from pass
to pass. Conceptually the "1" keeps travelling to the interior
on successive passes. It is analogous to a bubble moving in a
liquid~-filled tube; thus the name BUBBLE vector.

123

Using this scheme, our neédé will be met;

1. The MONITOR vector grows by an increment on each pass to do
the merging of an increment to the product. The MONITOR is dis-
carded after each pass; and is regenerated on a succeeding pass.
2. 'The CLUSTER vector augments its cluster of "l1’'3" by an in-
crement on each pass to do its job of slicing off a new MONITOR
vector from the SOURCE vector. It is saved in its augmented fovm
after each pass.

3. The BUBBLE vector shifts its set of ones to the interior by
an increment on each pass to do its job of adding an increment to
the CLUSTER. It is saved after being shifted in each pass.

4. The pair of SOURCE vectors remains unchanged during the whole
operation.

REQUIREMENTS

The analyst 1is to supply simple initial bulk data and
should be free of having to intervene in making entries in the
DMAP code. once the author has incorporated the BUBBLE scheme
into a DMAP loop. It should be easy for the author to use. It
should be economical on storage space.

ALGORITHM FOR APPENDING

Now to build an algorithm to meet the stipulated reguire-

ments, we will consider these requirements one by one.
Specification: Simple initial bulk data.

The user supplies 2 SOURCE vectors. Because they are
sparse, it will take a minimum of 2 cards for each vector for a
total minimum of four cards. This is simple. He knows how big
“big" is from the nature of the problem that he is analyzing. He

knows the size of the sub-matrix to be appended so he can set the
vectors’ increments.

124

Specification:

To

is to

illustrate
step of a loop (I =

Easy for

appending. The operations can be characterized as
SUM, HARVEST, AND APPLY.
of columns and the second example
colunns.
Pre-appending
CROP SHIFT SUM
{0y (0Y{0Y (LYy={03/0y~ (1% /Oy (1}
{01 101101 1O} (Oy{O|~ i1} jO1 |l
[0l 10§10 JO) {0110j= 111 10}]!
for 1171411 10} 101}0f= 111 10 {1}
{0F {0F40F {OF {1H{1}t~ {Op={1}{1l}
fOf 104101 19! 10)110¢{= {0} |O| |OI
[0] 10110 O} 10f10t= {0f J01 10}
{0} 1011Q) |01 101i0l= 10! Qi 10|
11210) 03 (0) 10)10)= (C) 10) 10)
PARTN MERGE ADD
Ith Names
BAS pUMMY TIP BUBLJ CLUSI CLUSS
BUBLI DUMMY BUBLJ
L
Prep for Loop 2
SWITCH to BUBLI
Post-appending
CROP SHIFT SUM
(1Y=(0) {0} (0Y (0) (OY~ (0Y (0) (O)
101 10] (0} [0} 10(|0l=> (O} 10} (O]
10F 10110] fof 010> 10} (O] 0]
101 10110} [0} 10}10i~= 10} |0} {0l
{10F {0r{0F 40} 41441} {OF{11t
101 11]1]1} 1oL 1010}~ {1} j0l 11|
[0} [0]]0} [0} 10pj0t= 11| (0} |1}
0] 10]t0]} {0}y \0)101~> |1} [0 |1}
\0) \0)10) (1)-{030j~> 1) \0) 1)
PARTN MERGE ADD
Ith Names
TIP DUMMY BAS BUBLJ CLUSI CLUSJ
BUBLI DUMMY BUBLJ
¥
Prep for Loop V
SWITCH to BUBLI

the

4) will be used to demonstrate how simple it
shift from pre

ORIGINAL PASE I3
OF POOR QUALITY

the author.

ease

of concept, examples of the Ith

or post avpending or from column or vaow

CROP, SHIFT,

The first example shows pre-appending

shows post-appending of
HARVEST APPLY
TIFPMON {1 0 O O 0O}
¥ Vv obod
({1 1Y (a\TA B CI
f11=10110}| Ibl{E F G H|
{11=10]4{0} lcl|I J K L
111=1C110} 1dj|M N O P}
{1¢={0}10) {et|Q R 3 TI
101 10 7/0) 1£110 V W X]
[0} 10110} lgli? 2 z yli
10! 10140} thilx w v ul
{0) 10)10) i)t s r qf
PARTN MERGE
CLUSJ TIPMON SUBMTX FRODI
} TIP = PRODJ
1 [

! }
CLUSI FRODI
VES APPLY

BASMON {0 0 0 0 13
[T ¥
{0Y [0\ {0Y fA B C D]ray
Q)] (0140¢ IEF G HIIDbI
101 101104 1T J K Lijtct
{01 10110) {IM N O Flid}
{1240 /0Y {Q R S Ti{et
111=10}t0! 10V WXIifY
jLI=1014CH 'Y 2 z yl gl
[1{=10110] Ix w v uflh|
1)1 \1) Lt s r gJ i)
PARTN MERGE
CLUSJ BASMON PRCDI SUBMTX
y BAS = PRODJ
¢ ’ ¥
' o ¢
CLUSI PRODI

125

Specification: Economical on storage space

The two source vectors will remain in storage for the
whole time that the loop is in operation. Their length may be in
the thousands, but the vectors are stored in packed form so the
storage will consist of the header, the increment of 1°'s, and the
packing index for the position of nonzero entries.

The CLUSTER will be the same lenagth as the SOURCE vectors
and will have a cluster of "1’'s3" instead of a small increment of
1’s, but the content will be mostly zerces in packed form; so its
storage requirements will be low until its cluster grows to the
final size of the PRODUCT matrix at the end of the loop.

The BUBBLE vectcrs will be the same length as the SOURCE
vectors and will have a single non-zero increment like the ZQURCE

vectors so their storage will be exactly the same as the SOQURCE
vectors.

The MONITOR vectors will exist for the duration of a merge
within a loop. Their brief storage requirements are exactly the
same as the SOURCE vectors, because they will differ from the
source only in the order number in the header.

ALGORITHM FOR POST APPENDING A MATRIX

Organize a pair of SOURCE vectors of large order; one with lead-
ing zeroes before the increment of "1’'s"; and the other with
trailing zeroes after the increment of "1's”. Call these re-
spectively BAS and TIP.

BAS Looooo....ooooooooo;l,JT

N L

1 The # of 1's 1is
governed by the sub-matrix order/pass; i.e. increment.

TIF L;\}ooooo....ooooooooof

t The # of 1's is governed by the increment/pass.

126

ORIGINAL PAGE IS
OF POOR QUALITY

Find out the order of the core matrix prior to entering
the loop. Use PARAML with operator = TRAILER and RECONO =
trailer position # 1 corresponding to the number of columns in
the core matrix. Call the parameter value that 1is returned by
the name CORCOL for the number of core columns. But, if the sub-
matrix is to be augmented by rows, set RECONC = trailer position
#2 corresponding to the number of rows: then call the returned
parametar by the name COROW for the number of core rows. The
remainder of the explanation for this algorithm will be based
upon the logic of post appending columns.

FPARAML COREMTX//~TRAILER*/1/CORCOL $
EQUIV COREMTX,PRODI/TRUE 3

Move the bubble to that CORCOL position in unity incre-
ments with these preparatory steps.

Set up a small loop to prepare the vectors BUBLI and CLUSI)
ahead of the main loop. Companion source vectors (SOURCEl) with
increments of unity called BAS1 and TIPl are supplied by the user
with DMI cards in the bulk data. Make copies of BAS1 to act as
starting configurations for CLUSI and BUBLI for molding into

their loop configurations.

COFPY BAS1/CLUSI/0 & For th=s case of post-appending.
COFY BAS1/BUBLI/O 35

Set the number of movements cf the bubble that are needed
to prepare BUBLI.

PARAM / 1 *SUB*/SHIFT/CORCOL/1 %
LABEL BUBTOP &
FILE BUBLI= SAVE/ CLUSI = SAVE/ PRODI = SAVE 3

Partition off a zero from the starting wvector of BUBLI
with TIPl.

127

| o -
{BUBLI} ==fiEl, {—-——-}
- DUMMY

PARTN BUBLI ’ ’TIPl/DUMMY s e II +7 $

Merge a zero onto the truncated stub of the BUBBLE vector
with BAS1l

DUMMY
{__-_} =BA3l., (puBLT}
0

MERGE DUMMY, , , , ,BAS1/BUBLJ/+7 3
The increment is now moved interior-ward in the BUBBLE vector.
Combine the shifted BUBBLE vector with the starting vector of
CLUSI.

fCLUSI} + {BUBLJY = {CLUSJ}?

ADD CLUSI,BUBLJ/CLUSJ/ 3§

Reset the internal 1loop names to the starting assignments in
order to prepare for the next pass.

SWITCH BUBLJ,.BUBLI/ /-1 3
SWITCH CLUSJ,CLUSI/ /-1 3

Return to the starting label if the loop count (internally moni-
tored by NASTRAN) is less than the prescribed value of SHIFT.

REPT BUBTOP.SHIFT 3

Now the positions of the ones in both BUBLI and CLUSI matches the
size of the CORE matrix.

Set up the loop for post appending an incremental sub-matrix onto
the CORE matrix in each pass.

LABEL CORTOP 3

128

Keep shifting the increment (which can now be different from
unity depending on the need of the sub-matrix in the loop) in the
BUBBLE vector ‘once per pass (with BAS and TIP instead of BASl and
TIP1) now that it has been set by the preparatory packet. Start
by truncating an increment of leading zeroes. ‘

0
{BUBLI} ==fif) [—-——}
DUMMY

PARTN BUBLI, ,TIP/DUMMY,,,/+7 §

Merge on an increment of trailing zeroes to push the bubble into
the interior.

DUMMY
{—-—} BAS., (puBLT?
0
MERGE DUMMY, , , , ,BAS/BUBLJ/+7 §

Combine the shifted BUBBLE vector with the CLUSTER vector
“CLUSI".

{CLUSI} + {BUBLJ} = {CLUSJ}
ADD CLUSI,BUBLJ/CLUSJ/ 3

Partition off the MONITOR vector to the size of .the PRODUCT
matrix being built in this pass.

PARTN BAS, ,CLUSJ/,MNTRI, , /+7 §

The desired merging vector has been produced and is ready to be
applied to the job of joining the current sub-matrix to the cur-
rent PRODUCT matrix.

129

$$MOCK FUNCT'L MODULE "MTXOPN" PRODUCES THE SUB-MATRIX "SUBMTX"
MTXOPN ~~ DBIN/SUBMIX/ §
$$ PRODUCT MATRIX "PRODI" IS AVAILABLE FROM A PREVIOUS PASS.

CPRODI : SUBMTX1 ==2NIB1, [pRrODJI

MERGE PRODI, ,SUBMTX, ,MNTRI, /PRODJ/ +7 $

Prepare for the next pass by resetting the matrix names to their
initial assignments.

SWITCH PRODJ,PRODI/ /-1 §
SWITCH CLU3J,CLUSI/ /-1 &
SWITCH BUBLJ,BUBLI/ /-1 ¢

Apply a test to see how far the merying has proceeded with re-
spect to the requirements of the matrix operations. Set the
value of a threshold to negative when the loop is done so that a
conditional jump takes the OSCAR outside the loop.

$$MOCK FUNCT'L MODULE "TESTOPN" PROVIDES A TEST LOGIC FOR LOOPS.
TESTOPN VARY, , /DBOUT/THRESHLD $&
COND OUTSIDE,THRESHLD $

Loop back to the top of the main loop so long as the value of
THRESHLD remains positive. When it turns negative the condi-
tional jump takes the sequence of operations beyond the loop.

REPT CORTOP, ## ¢ ## VALUE IS LARGER THAN THAT
$$ EXPECTED FOR THRESHOLD
. LABEL OUTSIDE $ PRODI IS PASSED OUTSIDE THE LOOP WITH
$$ SUB-MATRICES FROM ALL LOOPS MERGED ONTO IT

130

This completes the explanation for the algorithm following
the example ~of " post-appending any sized sub-matrix by columns.
In the appendix, this algorithm is coded for the four permuta-
tions of:

1. Post-append by columns.

2. Pre-append by columns,

3. Post append by rows.
Pre-append by rows.

CONCLUSION

It has been shown that it is within the capability of the
DMAP language to build a set of vectors that can grow incremen-
tally to be applied automatically and economically within a DMAP
loop to serve to append sub-matrices that are generated within a
loop to a product matrix.

131

APPENDIX FOR FOUR PATHS OF THE BUBBLE ALGORITHM

$POST APPEND COLUMNS.

FARAML COREMTX/ /+~TRAILERA/ 1 /CORCOL 3
COPY BAS1 /CLUSI/ 0 §

COFPY BAS1 /BUBLI/ 0 $

PARAM //*SUBA/SHIFT/CORCOL/ 1 §

LABEL BUBTOP s

FILE BUBLI = SAVE/ CLUSI = SAVE/ PRODI = SAVE $§
PARTN BUBLI, , TIPl1 /DUMMY, , , /+7 §
MERGE pumMy, , , , ,BAS1 /BUBLJ/+7 3
ADD CLUSI,BUBLJ/CLUSJ/ $

SWITCH BUBI.J ,BUBLI/ /-1 35

SWITCH CLUsJ,CLUSI/ /-1 §

REPT BUBTOP,SHIFT $

LABEL CORTOP ¢

PARTN BUBLI, ,TIF /DUMMY, , , /+7 3
MERGE puMMy, , , , .BAS /BUBLJ/+7 §
ADD CLUSI,BUBLJ/CLUSJI/ 3

PARTN BAS . ,CLUSJ’ ,MNTRI, , /+7 3§
MTXOPN DBIN/MODE/ 3

MERGE PRODI, -MODE, ,MNTRI, /PRODJ/+7 3
SWITCH FRODJ,PRODI/ /-1 §

SWITCH CLUSJ,CLUSI/ /-1 3

SWITCH BUBLJ,BUBLI/ /-1 §

TSTOPN VARY, , /DBOUT/THRESHLD $

COND QUTSIDE,THRESHLD $

REPT CORTOP,NMBR 3

LABEL OUTSIDE $

132

$PRE AFPEND COLUMNS.

PARAML
CoPY

CcopPY
PARAM

LABEL
FILE
PARTN
MERGE
ADD
SWITCH
SWITCH
REPT
LABEL
PARTN
MERGE
ADD
PARTN
MTKOPN
MERGE
SWITCH
SWITCH
SWITCH
TSTOPN
COND
REPT
LABEL

COREMTX/ /*TRAILER*/1/CORCOL 3

TIP1 /CLUSI/ O 3
TIP1 /BUBLI/ 0 §$

{ /*SUBA/SHIFT/CORCOL/ 1 ¢

BUBTOP $

BUBLI = SAVE/ CLUSI = SAVE/ PRODI

BUBLI, , BASl /DUMMY, , , /+7 3
poMMy, , ., ., LTIF1 /BUBLJ/+7 §
CLUSI,BUBLJ/CLUEJ/ $

BUBLJ ,BUBLI/ /-1 3

CLuUsJ,CLUSI/ /-1 3%

BUBTOP,SHIFT 2

CORTOFP s

BUBLI, ,BAS /DUMMY, , , /+7 3
pumMy, , , ., ,TIP /BUBLJ/+7 3
CLUSI,BUBLJ/CLUZJ/ 3

TIP , ,CLUSJ/ ,MNTRI, , /+7 §
DBIN/MODE/ 3

PRODI, ,MODE, ,MNTRI, /PFRODJ/+7

PRODJ,PRODI/ /-1 $
CLUSJ,CLUSI/ /-1 %
BUBLJ,BUBLI/ /-1 %

VARY, , /DBOUT/THRESHLD 3

QUTSIDE,THRESHLD §
CORTOF,NMBR 3
QUTSIDE $

133

3

$POST APPEND ROWS.

PARAML COREMTX/ /*TRAILER*/2/COROW %
COPY BAS1 /CLUSI/ 0 &

COFY BAS1 /BUELI/ 0 &

PARAM /! *3UB*/SHIFT/COROW/ 1 $

LABEL BUBTOP §

FILE BUBLI = SAVE/ CLUSI = SAVE/ PRODI = SAVE
PARTN BUBLI, , TIFl /DUMMY, , , /+7 &
MERGE DUMMY, , , , ,BAS1 /BUBLJ/+7? 3
ADD CLUSI,BUBLJ/CLUSJ/ &

SWITCH BUBLJ,BUBLI/ /-1 $

SWITCH CLUSJ,CLUSI/ /-1 3

REPT BUBTOP, SHIFT 3

LABEL CORTOP 3

PARTN BUBLI, ,TIP /DUMMY, , , /+7 &
MERGE DUMMY, , , , ,BAS /BUBLJ/+7 &
ADD CLUSI,BUBLJ/CLUSJ/ $

PARTN BAS » ,CLUSJ/ ,MNTRI, , /+7 &
MTXOPN DBIN/MODE/ &

MERGE PRODI ,MODE . + , MNTRI /FRODJ/ +7
SWITCH PRODJ,FRODI/ /-1 3

SWITCH CLUSJT,CLUSI/ /-1 3

SWITCH BUBLJ,BUBLI/ /-1 3

TSTOFN VARY, , /DBOUT/THRESHLD $

COND OUTSIDE, THRESHLD 3

REFT CORTOP,NMBR $

LABEL OUTSIDE 3

134

$PRE APPEND ROWS.

PARAML COREMTX/ /ATRAILER*/2/COROW §
CoPY TIP1 /CLUSI/ 0 &

COPY TIP1 /BUBLI/ 0 8

PARAM / /*SUB*/SHIFT/COROW/ 1 $

LABEL BUBTOP $

FILE BUBLI = SAVE/ CLUSI = SAVE/ PRODI = SAVE 3
PARTN BUBLI, , BASl1 /DUMMY, , , /+7 s
MERGE DUMMY, , ., ., ,TIP1 /BUBLJ/+7 §
ADD CLUSI,BUBLJ/CLUSJ/ &

SWITCH BUBLJ,BUBLI/ /-1 3

SWITCH CLuUsJ,CLUs1I/ /-1 3

REPT BUBTOP,SHIFT s

LABEL CORTOF 3

PARTN BUBLI, ,BAS /DUMMY, , , /+7 &
MERGE poMMy, , , , ,TIP /BUBLJ/+7 §
ADD CLUSI,BUBLJ/CLUSJ/ §

PARTN TIF , CLUSJ/ ,MNTRI, , /+7 3
MTXOPN DBIN/MODE/ s

MERGE PRODI,MODE, , , ,MNTRI /PRODJ/+7 3
SWITCH FRODJ,FRODI/ /-1 3

SWITCH CLusJ,CLUSI/ /-1 3

SWITCH BUBLJ,BUBLI/ /-1 $

TSTOPN VARY, , /DBOUT/THRESHLD 3

COND OUTSIDE,THRESHLD 3

REPT CORTOP,NMBR $

LABEL OUTSIDE §

135

